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The dynamical reconstruction of unknown distributed and boundary controls applied to non-linear equations of parabolic and 
hyperbolic type is discussed. Regularizing algorithms are indicated that enable the controls to be reconstructed synchronously 
with the evolution of the processes in question. The algorithms are stable with respect to information noise and computation 
errors. © 2000 Elsevier Science Ltd. All rights reserved. 

Problems of the dynamical reconstruction of the unknown inputs to systems with distributed parameters 
are discussed. These inputs may be distributed and boundary controls occurring in Dirichlet boundary- 
value problems. It is assumed that the system, governed by a parabolic or hyperbolic equation, functions 
over a given time interval T = [0, 9]. The evolution of its phase state z ( t ) ,  t e T (the trajectory of the 
system), is determined by a certain input (control) u(.) which may belong to a given function set P(.). 
The input u(-) itself and the phase trajectory z(.) of the system are unknown. However, certain devices 
are available that enable one, at discrete and fairly frequent times xi e T, "1~ i < "I;i+ 1, to measure the error 
in the output z(xi) .  It is required to reconstruct the control u.(.) that generates z(.): u.(.) = u.(.; z(.)). 
Since exact reconstruction of u.(.) is impossible, one has to devise an algorithm which computes some 
approximation of u.(.). This approximation should be better the smaller the error in measuring z(x i )  
and the finer the partition {xi} of the interval T. 

The problems discussed belong to the class of inverse problems of the dynamics of controllable systems 
(reconstruction of the input based on measurements of the output). Inverse problems for equations 
with distributed parameters have been investigated in an a p o s t e r i o r i  setting by many authors [1-3]. An 
algorithm has been proposed for the dynamical reconstruction of the input to a finite-dimensional 
dynamical system which is affine with respect to the control [4]. This method, which can be used 
effectively [5, 6] to solve various inverse problems for systems described by ordinary differential 
equations, is based oil ideas of positional control theory [7] and the methods of smoothing functionals 
and residuals familiar from the theory of ill-posed problems [1]. The method has been further developed 
for various classes of systems with distributed parameters [8-11]. These studies have discussed problems 
of the dynamical reconstruction of distributed and boundary controls, as well as the coefficients of an 
elliptical operator. 

The aim of this paper is, relying on boundary control theory as presented in [12-16], to demonstrate 
the possibilities of the method of auxiliary positional-control models for investigating problems of 
reconstructing unknown distributed and boundary controls applied to non-linear equations of parabolic 
and hyperbolic types. In the investigation of parabolic systems, use is made of the technique of contracting 
semi-groups. Hyperbolic objects are considered using the "cosine" operator (concerning this approach, 
see [12, 15, 16]). 

1. THE R E C O N S T R U C T I O N  OF C O N T R O L  IN PARABOLIC SYSTEMS 

Let £ be a controllable system described by a parabolic equation 

x t (t, 11) - Ax(t, 11) = f ( t ,  17) + ( B  I u I (t))(17) + ~ ( x ( t ,  17)) 

in T x f2 = Q, with initial conditions 

x(0,q) = x0(q) in f~ 

and boundary conditions 
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x(t)lr = B2u2(t ), t E T (1.3) 

where f~ c R" is an open bounded domain with a sufficiently smooth boundary F, A is the Laplacian, 
f(.) e L2(T; L 2 ( ~ ) )  is a given perturbation, ~(.)  is a function satisfying the Lipschitz condition, and B1 
e L(U1; L2(f~)) and B2 • L(U2; L2(F)) are continuous linear operators, Ux and U2 being uniformly convex 
Banach spaces. 

Following the approach used in [13], we will define what is meant by a solution. Let cr be a Dirichlet 
operator, that is 

~ A h = 0  on f~ 
flu 2 = h  [ h = u  2 on F, u 2~L2(F  ) 

It is well known [14, 17] that the operator (y is continuous from the space L2(~)  to the space H. We 
define a mapping 

t ~ p(t;.,., .) : H x L 2 (T; U) x C(T; H) ---) C(T; H) 

f 

p(t;x  o, u(.), z(')) = S(t)x o + A[. S(t - ~')o'B2u2 (z)d'~ + 
0 

t 

where 

+S S(t - ' t : ){ f(x)  + Btu j (z) + ~(z(x))}d% t e T 

Ax  = Ax, x E D(A)=  H ° ( f 2 ) n H 2 ( ~ )  

is a generator of a contracting semigroup of linear continuous operators {S(t); t /> 0} on H, and D(A)  
is the domain of definition of the operatorA. By a solution of problem (1.1)-(1.3) corresponding to a 
control u(.) • P(.) we mean the unique function 

satisfying the integral equation 

x(.) = x(.; 0; x o, u(.)) • C(T; H) 

x(t)  = p(t;Xo,U(.),x(.)), t • T 

We will now formulate the problem considered in this section. System (1.1)-(1.3) receives unknown 
inputs Ul(-) and Uz(), u(t) = {Ul(t), u2(t)} • P = Pa × P2 for almost every (a.e.) t ~ T; P1 C U b  P2 Q 
U2 are convex, bounded and closed sets. At sufficiently frequent discrete times 

T, i•T,  T q = ' ~ i _ l ' k ' ~  , i • [ l : m - 1 ] ,  % = 0 ,  "~m=O 

the phase states z(xi) = x('ci, q) = x('ci; O, Xo, u(.))  ~ H = L2(~ ). of system (1.1)-(1.3) are measured 
(with an error). The measurement results ~i E H satisfy the inequalities 

[~i-x(xi ) ln<'h (1.4) 

where h is the measurement accuracy parameter. 
It is required to indicate an algorithm for reconstructing an unknown input 

u,(.) = {u I (.), u~(.)} • P(.)= {u(.) = {Ul(. ), u2(.)} • L.z(T;U) : 

u l ( t ) eP l ,  u 2 ( t ) e P  2 fora.e,  t e T }  

which generates an unknown output z(.) = x(.), that is, to construct an algorithm for the approximate 
computation of a control u, (.) such that the corresponding solution x(.; 0, Xo, u,(.)) is identical with x(-). 
Here U = U1 x U2 is the space of controls, and x(.; 0, Xo, u,(.)) is a solution of Eq. (1.1) satisfying initial 
conditions (1.2) and boundary conditions (1.3) and with the control u(.) = u,(.). 

We will solve the problem along the lines of the approach proposed in [4-11]. It is first necessary to 
select an auxiliary system or model. As a model we take the linear system described by the parabolic 
equation 
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w t (t, 1"1) - Aw(t , 'q)  = fCt, rl) + (BlV ~ (t))(rl) + v g (t, 1"1) in T x 

with initial condition 

(1.5) 

w(0,rl) = w0(rl) in f/  (1.6) 

and the Dirichlet boundary condition 

w(t)]r h t =B,fl2 ( ) ,  t e T  (1.7) 

By a solution of Eq. (1.5) with initial condition (1.6) generated by controls {x){(.), uh(.)} e p(.) 
and vh(.) ~ L2(T;/-/), we mean a function 

wh(.) = w(.;O,w o, vh(.))  a C(T;H) ,  v*(') = {vP(.), v2n(.), v~(.)} 

defined by the following equality [14] 

! t 
w h(t) = S ( t )w  o + AJ S( t  - r)trB2v~ (z )dx  + J S(t  - ~) {f('t') + Blv ~ ('t") + v ~ ('r) }d't', 

0 0 

v h(.) E P(-)X L**(T;H) 

t ~ T  

(1.8) 

As is well known [14], if the condition 

is satisfied, such a solution exists and is unique. 
Note that if u(.) (or ~h(.)) is an unbounded function of time (e.g. a function which is summable in 

the norm squared), then the solution of Eq. (1.1) (or (1.5)) need not be an element of the space 
CCT; 119. 

Let tp(.) be the modulus of continuity of the function t --+x(t) = x(t; O, x0, u(-)) ~ H on T, that is 

(1.9) +.(8)  = sup{Ix(h)- x(t2)lM : t,. t 2 m T. ltl-t=l < 5> 

Let {Ah) be a family of uniform partitions 

A h - -  {'l;i}im_-0 , 1; i = T,h,i, m = m h ,  '~0 ----" 0 ,  '~m : 1~ ( 1 . 1 0 )  

of the interval T with diameters 8 = 8(h). 
We will now describe an algorithm for solving the problem. First we choose a family {A h} and a 

function t~(h): [0, 1) ---) R ÷ satisfying the following parameter-compatibility condition. 

Condi t ion  1. 

8(h)--o0+, tx(h)--o0+ 

{8(h)+h+~PxCS(h))}ot- t (h)  ~ 0 as h + 0 

Once h is entered (before the beginning of the process), it is fixed. Also fixed thereby are Ah and 
cffh). The operation of the algorithm is divided into m h - 1 steps of the same type. During the ith step, 
implemented in the time interval 5,' = 5h, i = {% gi+ 1), "ci = Zh, i, the following operations are performed 
First, at time xi one finds a control 

vhct)={Vlh( t ) ,  vhCt), v ~ ( t ) : t ~ i }  

where 

v~h(t) =v[}, v h ( t )  = v . ( t -  ~i), v3h(t) = O(~i) for a.e. t ~ 8; 

Vl h • * - I  = argmm{2(si ,A B, vt) H +a(h)Ivll v, : v, P,} 

f 'c i+ I 
{ s( 'ci+l  - z )s i ,  BEy 2(s))a r) + v,( - )=argmin{ I 2 * 

[ xi 

(1.11) 
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+a(h~u2(,~u21d~:u2(s)eP 2 fora.e,  s •  [0,5]} 

s* = A - I ( ¥ i  - ~ i ) ,  Itli--wh('Ci) H <~h 

where the operator t~* is the adjoint of the Dirichlet operator o. This control is now applied at the 
input of the model. After that, the phase state of the model is recalculated: instead of w(%) one finds 
w(%+1). The whole procedure is implemented before the time O. 

Remark. As is well known [16, 17] 

a*z = 0 f / ~ l r ,  VzEH 

wherefis a solution of the Dirichlet problem 

Af(rl)=z(rl), 1]~f2; fir=0 
Therefore 

u , ( . )=argmin]  I {2 A-Is('t'i+I-s)silr, Bzv2(s) + 

+o~(h~2(s)lu ~ }as :u2(s)  • P2 for  a.e. s • [0,61 

Let U(x( . ) )  be the set of all controls in P(.) compatible with the output x(.), that is 

U(x(.)) = {u(.) = {u, (.), u2 (')} • P( ' ) :  

t 
x( t )  - S ( t )x  o - J S( t  - "c) {f('0 + ~(x('0) }d'c = 

0 

, , } 
= AJ S(t  - "0o'Bzu 2 ('r)d~ + I S(t - "r)Blu I ('c)d'¢, g t  • T (1.12) 

0 0 

This set is obviously convex, bounded and closed in L2(T; U). Hence it contains a unique element 
u,(.) = u.(.; x(.)) = {Ul*('), uz*(')} of minimum Lz(T;  U)-norm. 

Let t~ h. = {t~hl(-), t)h2(.)}. 

Theorem 1. Suppose Condition 1 is satisfied and the initial state w 0 E H of the model is such 
that 

Ix0 - w01, ~< h 

Then, for any e > 0, one can find an h 1 such that, whenever h ~< h 1 

We define the Lyapunov functional 

u ,h (.) _ u. (. ;x(.)) Ita fr;u)<~e (1.13 ) 

I l 2 
s( t)  = IA- ( w ( t )  - x ( t ) )  H + E ( t )  (1 .14)  

o (s) u2 ÷ -lu=*(s)l=u2 ds (1.15) 

L e m m a  1. The following inequality holds uniformly over all partitions Ah and measurements ~i that 
satisfy inequalities (1.4) 

eX'ci)<-kl(8+h+tPx(~)),  i =  1 ..... m 
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The proof of Theorem 1 is based on this lemma, whose truth, in turn, is established in the same way 
as in [4, 9]. 

2. R E C O N S T R U C T I O N  OF THE C O N T R O L  IN H Y P E R B O L I C  SYSTEMS 

Let Z be a controllable system described by a hyperbolic equation 

xu ( t  , 11) - Ax(t ,  11) = f ( t ,  11) + (Blu 1 (t))(11) + 

+6P(x(t , 'q) ,xt( t ,  rl)) in T × ~ =  Q (2.1) 

with initial conditions 

x(0,rl) = Xo(rl), xt(0,~) = Xlo(rl) in f2 (2.2) 

and boundary conditions (1.3). The domain ~,  the operator A, the function f(.), the mappings B1, B 2 
and the spaces Ua, U2, U, Vare the same as in Section 1. The non-linear perturbation q~(., .) is Fr6chet 
differentiable on H × H-l(f2) (H = L2(f~)) and satisfies the growth condition 

1~ (x, Y)lt/"~ M{I x I~/+ I y IH_ t ¢~)}, V(x, y) ~ H × H -I (~) 

(~ '  denotes the Fr6chet derivative). 
Following the approach described in [13], we define what is meant by a solution of problem (2.1), 

(2.2), (1.3). Le tx  0 e H ,  xlo ~ H - l ( f ~ ) .  Define a mapping 

t ~ p(t;.,.,., .) = {Pl ('),P2 ('),} : H × H- l (~)  x L2(T;U ) × 

×C(T; H x H -I (~)) ---> C(T; H × H -I ( ~ ) )  

t 

pj  (t; x o, x 10, u('), Z(')) = S ° ( t )x  0 + Sj (t)x 10 - AS Sj (t - "t')crB2u 2 ( z ) d z  + 
o 

t 

+ S S j ( t - x ) { f ( x ) + B l u I ( X ) + O ( Z I ( ' O ,  Z2(X))}dz, t ~ T; j = 1,2 
o 

S° ( t )  = C(t),  S° ( t )  = AT( t ) ,  Sl( t  ) = T(t) ,  S2(t ) = C(t) 

z(-) = {Zl ('), z2 (') } ~ C(T; H x H -I ( ~ ) )  

The operator A was defined in Section 1. It is well known [12] that this operator is a generator of a 
strongly continuous "cosine" operator {C(t); t/> 0} on H, with which, in turn, we can associate a "sine" 
operator 

t 

T( t ) x  = S C( z )xdx  
o 

By a solution of problem (2.1), (2.2), (1.3) corresponding to a control u(.) s P(.) we mean, following 
the approach of [13, 15], the unique function 

z(-) = {x(. ;O, xo,Xlo,U(.)) , xt(.  ;O, xo,Xlo,U(.)) } c C ( T ; H  × H-1(~2)) 

satisfying the integral equation 

z( t)  = p(t;Xo,Xto,U(.) ,z( .))  , t ~ T 

Essentially, our problem is analogous to that described in Section 1 for a parabolic equation. Namely, 
it is assumed that the system receives unknown inputs ul(. ) and u2(. ), u(t )  = {Ul(t), u2(t)} E P = P1 × 
P2 for almost all t e T; P1 C U1 and P2 C U2 are convex, bounded and closed sets. At sufficiently frequent 
discrete times 

"CiET, "17i=1;i_1+~, i ~ [ l : m - 1 ] ,  X0=0 , T,m=O 
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the phase states 

z(xl)= {x(xi,~).xAx.~)} 

of system (2.1), (2.2), (1.3) are measured (with an error). The measurement results ~ i  ~-" {~(1)('17i)} • 
H x H-X(f~) satisfy the inequalities 

~ ' )  - x(xi~ H <~ h, ~I 2) - x,('ci)lH_,(n ) ~< h (2.3) 

where h is the measurement  accuracy parameter. The problem is to construct an algorithm for the 
dynamical reconstruction of the unknown input u.(.) = (u~(.), u~(.)} • P(.) which also generates the 
unknown output z(.). 

We will now solve the problem. As a model we take the linear system described by the hyperbolic 
equation 

with initial conditions 

w .  ( t ,  77) - a w ( t ,  17) = 

= f(t, rl) + (Blu ~ (t))('q) +u ~(t, rl) in T x t2 (2.4) 

w(O, TI) = wo(TI), wt(O, T1) = wl0(TI) in ~2 (2.5) 

and Dirichlet boundary conditions (1.7). 
By a solution of Eq. (2.4) with initial conditions (2,5) generated by the controls {~hl(.), ~( . )}  • P 

and ~( - )  • L 2 (Z; H) we mean a function 

wh(') = w(. ;0, w O, Wlo,V h(.)) ~ C(T; H), w~(.) ~ C(T; H -I (~) )  

v %) = {u~(.), v~(.), h v3 (-)} 

defined by the following equalities [15] 

t 

wh(t) = C(t)w 0 + r(t)Wlo - A~ T(t - "C)(yB2v g('c)d'c + 
0 

t 

+ ~ r ( t  - ~){f('O + Blv ~(~) +u ff (~)}d~ 
0 

t 

w~ (t) = AT(t)x 0 + C(t)Xlo - A ~ C(t - ~)c~B2u2 ('c)d'r + 
0 

t 

+ JC(t-x){f(x)+Blui(x)+v~(x)}dx, t ~ T 

As is well known [15], if condition (1.8) is satisfied, such a solution exists and is unique. 
Let 9() and q¥(.) he the moduli of continuity of the functions t ~ x(t) = x(t; 0; Xo, Xl0, u.(.))•H, 

t ---) xt(t) = xt(t; 0; Xo, Xl0, u.(-)) • H-1(f~), respectively, on T, that is 

~0x(5) = sup[I x(t  I ) -  x(t 2) lu: t 1 ,t 2 E T, I t x - t 2 l< 5} 

9 i (5)  = sup{I xt( f i ) -  xt( t  2) IH_t(u): fi,t2 e T, I fi - t 2 I< 5} 

Suppose, moreover, that we have chosen a family {Ah} of uniform partitions (1.10) of the interval 
T with diameters 5 = 5(h) and a function a(.) : [0, 1) ~ R + satisfying the following parameter- 
compatibility condition. 

Condition 2. 

5(h) ~ 0+, a(h) --~ 0 + 

{5(h) + h + ~o x (8(h)) + ~ (5(h)) }a -i (h) ~ 0 as h ~ 0 
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The algorithm for solving the problem is analogous to that described in Section 1. One first selects 
a family {Ah} and function o~(h) satisfying Condition 2. Once h is entered (before the beginning of the 
process), it is fixed. Also fixed thereby are Ah and ¢t(h). The operation of the algorithm is divided into 
m h - 1 steps of the same type. During the ith step, carried out in the time interval 8 /=  8h~ = [Zi, "I~i+1), 
T'i = "~h,i, the following operations are performed. First, at time xi one determines a control 

where 

l l h ( t ) = { t l h  h h 8i } li~V 2i,U 3i : t 

o h = argmin{2(A-Is(*i),A-IBlvl)H +a(h)  lv1121 :vl ~ Pl} 

Vhi = argmin{2(s(,i),A-loB2u2)~l +a(h) Io  2 122 :v 2 e P2} 

s(.i) = A-l(Vi _ ~2)), I vi - wh(xi)In-L(ta) ~< h 

This control is then applied at the input of the model. After that, the phase state of the model is re- 
calculated: instead of w(xi) one finds w('ci+l). The whole procedure is implemented before the time O. 

Let U(z(.)) be the set of all controls in P(.) compatible with the output z(-), that is, which satisfies a 
relationship analogous to (1.12), with S(t)x o replaced by C(t)x o + T(t)xlo and S(t - z) replaced by 
T(t - "c). This set is also convex, bounded and close in L2(T; U). It therefore contains a unique element 
u.(.) = u.(.; z(-)) = {Ul.(.; z(.)), u2*(; z(.))} of minimum L2(T; U)-norm. 

Let agh(.) = {a~h(.), agh(.)}. 

Theorem 2. Suppose Condition 2 is satisfied and the initial state Who ~ H and Wl0 ~ H-~(D) of the 
model is such that 

I x  0 - W 0 I H ~  h, [ Xl0 - wl0 IH_t(t~)~ < h 

Then, for any ~ > 0, one can find h2 such that, whenever h ~< h2, inequality (1.13) holds. 
We define a Lyapunov functional 

~,(t) = ~,(t)(t) + L(2)(t) + E(t) 

where 

~0)(t) =1A-lyh(t)12, k(2)(t) I A -I h't ' '2 
= Yt ( ) fH-l(f~) 

yh(t) = w(t)--x(t) 

The functional E(t)  is defined by formula (1.15). 
The proof of the theorem relies on the following lemma. 

L e m m a  2. The following inequality is true uniformly over all partitions A h and measurements ~i 
satisfying inequalities (2.3) 

E(x i) ~< k(8 + h + tpx (8) + q0 x (8)), i = 1 ..... m 

In the proof of Lemma 2, use is made of properties of the "sine" and "cosine" operator [12, 18], and 
the following inequalities are established 

~,(1) ('CI+ 1 ) ~ ~,(!) ('171) -t- 28(A-lY(Xl), A-lyt ("~i))L2 (fl) + K18(h + 8) 

~'(2) ('[i+1) ~ ~ , (2 )  ( '1~i )  - -  28(A-l y('Ci), A-l yt('ci))ta(ta) + K28(h + 8)+ 

'Ei+ I 
+ S [2(A-Is(*i),A-IB1(v~-ut*(s)))H +~(h){Iv~,. I~ - lul , (s) l~,  }]ds+ 

"~i 

'ci+ 1 
+ I [2(s.°'~,A-~a~(v2 -u2.(s)).  +~(h)Yv~i t~ 2 - lu~.(s)t~ }]as 

,¢, 
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Remarks. 1. The problem of reconstructing controls in a hyperbolic system may also be solved using the semigroup 
approach, since, as is well known, the operator 

a'10a 
generates a C0-semigroup in the space H x/-Fl(f~) such that the solution of problem (2.1), (2.2), (1.3) may be 
represented in the form 

x(t o t 0 [~(tl=exp(A't~,[-A'!exp(A.(t-s))l~u~(s~+ 
+ Sexp ( A . ( t -  s)) ds 

o (x(s),k(s)) + Blu j (s) 

2. The algorithms described in this paper may be suitable (with appropriate adjustments) for solving the problem 
of reconstructing boundary controls in the Dirichlet equation, in the case when the dynamical system under 
consideration is described by other types of non-linear equations with distributed parameters. 
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